Evaluating the accuracy of facial expressions as emotion indicators across contexts in dogs

Abstract

Facial expressions potentially serve as indicators of animal emotions if they are consistently present across situations that (likely) elicit the same emotional state. In a previous study, we used the Dog Facial Action Coding System (DogFACS) to identify facial expressions in dogs associated with conditions presumably eliciting positive anticipation (expectation of a food reward) and frustration (prevention of access to the food). Our first aim here was to identify facial expressions of positive anticipation and frustration in dogs that are context-independent (and thus have potential as emotion indicators) and to distinguish them from expressions that are reward-specific (and thus might relate to a motivational state associated with the expected reward). Therefore, we tested a new sample of 28 dogs with a similar set-up designed to induce positive anticipation (positive condition) and frustration (negative condition) in two reward contexts: food and toys. The previous results were replicated: Ears adductor was associated with the positive condition and Ears flattener, Blink, Lips part, Jaw drop, and Nose lick with the negative condition. Four additional facial actions were also more common in the negative condition. All actions except the Upper lip raiser were independent of reward type. Our second aim was to assess basic measures of diagnostic accuracy for the potential emotion indicators. Ears flattener and Ears downward had relatively high sensitivity but low specificity, whereas the opposite was the case for the other negative correlates. Ears adductor had excellent specificity but low sensitivity. If the identified facial expressions were to be used individually as diagnostic indicators, none would allow consistent correct classifications of the associated emotion. Diagnostic accuracy measures are an essential feature for validity assessments of potential indicators of animal emotion.

Quantity discrimination in a spontaneous task in a poison frog

Abstract

The use of quantitative information underlies a range of animal behaviors. There are thought to be two parallel systems for judging quantity: a precise representation of small numbers of objects, typically less than 4, that can be tracked visually (object tracking system) and an imprecise system for larger quantities (approximate number system) governed by Weber’s law. Using a spontaneous discrimination task with live prey, we examined the ability of the poison frog Dendrobates auratus to discriminate quantities of low (1–4) or high (4–16) numerosity over a range of ratio contrasts (0.33, 0.5, 0.67, 0.75). Similar to a previous study in treefrogs, we found that the poison frogs chose the larger quantity of flies when choosing between 1 and 3 and between 1 and 2. However, their performance was near chance when choosing between 2 and 3 and below chance when choosing between 3 and 4. When the numerosity of flies was higher, they did not discriminate between the larger and smaller quantity. Our findings are consistent with the ability of poison frogs to discriminate small quantities of objects using an object tracking system, but could also reflect a singular vs. plural discrimination. We did not find evidence of an approximate number system governed by Weber’s law, nor evidence of a speed–accuracy tradeoff. However, total set size was associated with lower accuracy and longer latencies to choose. Future studies should explore quantity discrimination in additional contexts to better understand the limits of these abilities in poison frogs.

Effects of early noise exposure on hippocampal-dependent behaviors during adolescence in male rats: influence of different housing conditions

Abstract

Central nervous system (CNS) development is a very complex process that can be altered by environmental stimuli such as noise, which can generate long-term auditory and/or extra-auditory impairments. We have previously reported that early noise exposure can induce hippocampus-related behavioral alterations in postnatal day (PND) 28 adolescent rats. Furthermore, we recently found biochemical modifications in the hippocampus (HC) of these animals that seemed to endure even in more mature animals (i.e. PND35) and that have not been studied along with behavioral correlates. Thus, the aim of this work was to reveal novel data about the effects of early noise exposure on hippocampal-dependent behaviors in more mature animals. Additionally, extended enriched environment (EE) housing was evaluated to determine its capacity to induce behavioral modifications, either by its neuroprotective ability or the greater stimulation that it generates. Male Wistar rats were exposed to different noise schemes at PND7 or PND15. Upon weaning, some animals were transferred to EE whereas others were kept in standard cages. At PND35, different hippocampal-dependent behavioral assessments were performed. Results showed noise-induced behavioral changes that differed according to the scheme and age of exposure used. In addition, housing in an EE was effective either in preventing some of these changes or in inducing the appearance of new behavioral modifications. These findings suggest that CNS development would be sensitive to the effects of different type of environmental stimuli such as noise or enriched housing, leading to maladaptive behavioral changes that last even until adolescence.

Putting the cart before the horse: claims for mirror self-recognition in horses are unfounded

Abstract

The recent article by Baragli, Scopa, Maglieri, and Palagi (Anim Cogn https://doi.org/10.1007/s10071-021-01502-7, 2021) that claims to demonstrate mirror self-recognition (MSR) in horses is not based on compelling evidence. We identify problems with their experimental procedures, data, and assertion about “demonstrating MSR at group level.” Examples of these problems include incomplete experimental design, absence of important control conditions, inappropriate terminology, suboptimal mark application procedures and coding of videos, ambiguity of videos presented as supporting evidence, and inconsistencies in data presentation and interpretation. It is not the case that their study “marks a turning point in the analytical technique of MSR exploration.”

Domestic cats (Felis catus) prefer freely available food over food that requires effort

Abstract

Contrafreeloading is the willingness of animals to work for food when equivalent food is freely available. This behavior is observed in laboratory, domesticated, and captive animals. However, previous research found that six laboratory cats failed to contrafreeload. We hypothesized that cats would contrafreeload in the home environment when given a choice between a food puzzle and a tray of similar size and shape. We also hypothesized that more active cats would be more likely to contrafreeload. We assessed the behavior of 17 neutered, indoor domestic cats (Felis catus) when presented with both a food puzzle and a tray across ten 30-min trials. Each cat wore an activity tracker, and all sessions were video recorded. Cats ate more food from the free feed tray than the puzzle (t (16) = 6.77, p < 0.001). Cats made more first choices to approach and eat from the tray. There was no relationship between activity and contrafreeloading, and there was no effect of sex, age, or previous food puzzle experience on contrafreeloading. Our results suggest that cats do not show strong tendencies to contrafreeload in the home environment, although some cats (N = 4) ate most food offered in the puzzle or showed weak contrafreeloading tendencies (N = 5). Eight cats did not contrafreeload. Cats who consumed more food from the puzzle, consumed more food in general, suggesting a relationship between hunger and effort. Further research is required to understand why domestic cats, unlike other tested species, do not show a strong preference to work for food.

Are you my mummy? Long-term olfactory memory of mother’s body odour by offspring in the domestic cat

Abstract

Longevity of odour memories, particularly those acquired during early development, has been documented in a wide range of taxa. Here, we report that kittens of the domestic cat retained a memory into adult life of their mother´s body odour experienced before weaning. Kittens from 15 litters were tested when permanently separated from their mother at weaning on postnatal week 8, and tested again when 4 and 6 months and over 1 year of age. When presented with a simultaneous three-way choice between body odour of their own mother, of an unknown female of similar reproductive condition and a blank stimulus, weaning-age kittens sniffed the cotton swab with the odour of an unknown female longer. This preference, however, changed when as adults the subjects sniffed the cotton swab with their own mother’s odour longer. We conclude that kittens form a long-lasting memory of the body odour of their mother, and by implication, that mothers retain an individual odour signature sufficiently stable across age and changes in their reproductive state to be distinguishable by their adult offspring. What this means in functional or cognitive terms is not yet clear. Does such “recognition” have a specific biological function and a specific cognitive representation? Or is it rather part of a more general phenomenon well known in (human) olfaction of odours that are familiar generally being judged more pleasant, and that might then influence olfactory-guided behaviour in a variety of contexts?

Positional inference in rhesus macaques

Abstract

Understanding how organisms make transitive inferences is critical to understanding their general ability to learn serial relationships. In this context, transitive inference (TI) can be understood as a specific heuristic that applies broadly to many different serial learning tasks, which have been the focus of hundreds of studies involving dozens of species. In the present study, monkeys learned the order of 7-item lists of photographic stimuli by trial and error, and were then tested on “derived” lists. These derived test lists combined stimuli from multiple training lists in ambiguous ways, sometimes changing their order relative to training. We found that subjects displayed strong preferences when presented with novel test pairs, even when those pairs were drawn from different training lists. These preferences were helpful when test pairs had an ordering congruent with their ranks during training, but yielded consistently below-chance performance when pairs had an incongruent order relative to training. This behavior can be explained by the joint contributions of transitive inference and another heuristic that we refer to as “positional inference.” Positional inferences play a complementary role to transitive inferences in facilitating choices between novel pairs of stimuli. The theoretical framework that best explains both transitive and positional inferences is a spatial model that represents both the position of each stimulus and its uncertainty. A computational implementation of this framework yields accurate predictions about both correct responses and errors on derived lists.

African elephants can detect water from natural and artificial sources via olfactory cues

Abstract

Water is vital for mammals. Yet, as ephemeral sources can be difficult to find, it raises the question, how do mammals locate water? Elephants (Loxodonta africana) are water-dependent herbivores that possess exceptional olfactory capabilities, and it has been suggested that they may locate water via smell. However, there is no evidence to support this claim. To explore this, we performed two olfactory choice experiments with semi-tame elephants. In the first, we tested whether elephants could locate water using olfactory cues alone. For this, we used water from two natural dams and a drinking trough utilised by the elephants. Distilled water acted as a control. In the second, we explored whether elephants could detect three key volatile organic compounds (VOCs) commonly associated with water (geosmin, 2-methylisoborneol, and dimethyl sulphide). We found that the elephants could locate water olfactorily, but not the distilled water. Moreover, they were also able to detect the three VOCs associated with water. However, these VOCs were not in the odour profiles of the water sources in our experiments. This suggests that the elephants were either able to detect the unique odour profiles of the different water sources or used other VOCs that they associate with water. Ultimately, our findings indicate that elephants can locate water olfactorily at small spatial scales, but the extent to which they, and other mammals, can detect water over larger scales (e.g. km) remains unclear.

Quantitative abilities of invertebrates: a methodological review

Abstract

Quantitative abilities are widely recognized to play important roles in several ecological contexts, such as foraging, mate choice, and social interaction. Indeed, such abilities are widespread among vertebrates, in particular mammals, birds, and fish. Recently, there has been an increasing number of studies on the quantitative abilities of invertebrates. In this review, we present the current knowledge in this field, especially focusing on the ecological relevance of the capacity to process quantitative information, the similarities with vertebrates, and the different methods adopted to investigate this cognitive skill. The literature argues, beyond methodological differences, a substantial similarity between the quantitative abilities of invertebrates and those of vertebrates, supporting the idea that similar ecological pressures may determine the emergence of similar cognitive systems even in distantly related species.

Dogs (Canis lupus familiaris) are susceptible to the Kanizsa’s triangle illusion

Abstract

The ability to complete partially missing contours is widespread across the animal kingdom, but whether this extends to dogs is still unknown. To address this gap in knowledge, we assessed dogs’ susceptibility to one of the most common contour illusions, the Kanizsa’s triangle. Six dogs were trained to discriminate a triangle from other geometrical figures using a two-alternative conditioned discrimination task. Once the learning criterion was reached, dogs were presented with the Kanizsa’s triangle and a control stimulus, where inducers were rotated around their centre, so as to disrupt what would be perceived as a triangle by a human observer. As a group, dogs chose the illusory triangle significantly more often than control stimuli. At the individual level, susceptibility to the illusion was shown by five out of six dogs. This is the first study where dogs as a group show susceptibility to a visual illusion in the same manner as humans. Moreover, the analyses revealed a negative effect of age on susceptibility, an effect that was also found in humans. Altogether, this suggests that the underling perceptual mechanisms are similar between dogs and humans, and in sharp contrast with other categories of visual illusions to which the susceptibility of dogs has been previously assessed.