Reddish male swallows have short sperm

Abstract Sexual selection favors the evolution of pre-copulatory sexual traits such as ornamentation and post-copulatory sexual traits such as long sperm, but the interrelationships of the two types of sexual …

Invasive Italian wall lizards outcompete native congeneric species in finding food in a Y-maze

Abstract

Though biological invasions constitute one of the biggest threats for global biodiversity, our understanding of the mechanisms that enable invasive species to outperform native species is still limited, especially, in terms of behavior. Most available studies have examined behavioral traits which favor invasive species on the later stages of invasion, however, our knowledge on earlier stages, namely, when alien species face novel environments and must exploit new resources, remains obscure. Here, we focus on one crucial behavioral trait, finding food. The Italian wall lizard (Podarcis siculus) has been widely introduced and established viable populations in S. Europe and N. America. We examined whether P. siculus has enhanced exploratory behavior and abilities to find food compared to two native congeneric species with which it may come in contact in the near future, an insular endemic (P. milensis) and a widely distributed lizard (P. erhardii). We performed a Y-maze experiment, in which we varied arm markings in a standard way to prevent learning. Podarcis siculus was more efficient than its congenerics in finding and consuming food. This exploitative superiority was persistent, more frequent and repetitive. Interesting behavioral differences were also detected within the native species. Some P. milensis individuals showed no interest in exploring the maze, while few P. erhardii individuals remained rather indifferent to food even after detecting it. Our results suggest that the invasive P. siculus displays behavioral traits that could provide better opportunities for survival in the new environment and thus facilitate establishment even in the presence of congenerics. This provides further support to the idea that behavior plays a crucial role in animal invasions.

No evidence of spatial representation of age, but “own-age bias” like face processing found in chimpanzees

Abstract

Previous studies have revealed that non-human primates can differentiate the age category of faces. However, the knowledge about age recognition in non-human primates is very limited and whether non-human primates can process facial age information in a similar way to humans is unknown. As humans have an association between time and space (e.g., a person in an earlier life stage to the left and a person in a later life stage to the right), we investigated whether chimpanzees spatially represent conspecifics’ adult and infant faces. Chimpanzees were tested using an identical matching-to-sample task with conspecific adult and infant face stimuli. Two comparison images were presented vertically (Experiment 1) or horizontally (Experiment 2). We analyzed whether the response time was influenced by the position and age category of the target stimuli, but there was no evidence of correspondence between space and adult/infant faces. Thus, evidence of the spatial representation of the age category was not found. However, we did find that the response time was consistently faster when they discriminated between adult faces than when they discriminated between infant faces in both experiments. This result is in line with a series of human face studies that suggest the existence of an “own-age bias.” As far as we know, this is the first report of asymmetric face processing efficiency between infant and adult faces in non-human primates.