Incrementing non-matching- but not matching-to-sample is rapidly learned in an automated version of the odor span task

Abstract

The odor span task (OST) is frequently used to assess memory capacity in rodents. Odor stimuli are presented in a large arena and choices of session-novel odors produce food reward. The procedure can be described as an incrementing non-matching-to-sample contingency because on each trial one new stimulus is presented along with one or more previously presented (non-reinforced) comparison odors. An automated version of this task has recently been developed in which odors are presented with an olfactometer in an operant chamber using a successive conditional discrimination procedure. The present study compared the acquisition of matching- vs. non-matching-to-sample versions of the task with six rats tested under each procedure. All six rats trained on the non-matching variation showed rapid acquisition of the discrimination with high rates of responding to odor stimuli when they were session-novel and low rates of responding to subsequent presentations of those odors. However, only three of the six rats trained on the matching variation met acquisition criteria, and two of the three that did acquire the task required extensive training to do so. These results support findings from the OST that rats can differentiate between stimuli that are session-novel and those previously encountered, but also that a matching contingency is more difficult to learn than a non-matching arrangement. These findings parallel differences observed between acquisition of simple matching- and non-matching-to-sample tasks, but accounts such as novelty preference or the oddity preference effect may not be sufficient to explain the present results.

Hermit crabs, shells, and sentience

Abstract

Hermit crabs have an intimate relationship with gastropod shells and show numerous activities by which they locate, select, and change shells in different contexts. They gather information about new shells and update information about their existing shells. This involves integration of different sensory modalities, memory-formation, and comparison of the overall value of each shell. Crabs also fight to get shells from other crabs, and again they gather information about the shell qualities and the opponent. Attacking crabs monitor their fight performance, and defenders are influenced by attacker activities, and both crabs are influenced by the gain or loss that might be made by swapping shells. Swapping shells involves the defender being naked for a short period. Leaving a shell also occurs if the shell is experimentally fixed in place or buried in sand or if small electric shocks are applied to the abdomen, and the quality of the current shell is traded-off against escaping possible asphyxiation or the aversive shocks. Hermit crabs show remarkable abilities, involving future planning, with respect to recognizing the shape and size of shells, and how they limit their passage through environmental obstructions. They also assess if shells might become available and wait for that to happen. Groups of crabs arrange themselves in size order so that orderly transfer of shells might occur down a line of crabs. These observations are discussed in the light of complex perceptual and cognitive abilities, and the possibility of sentience and awareness is discussed.

Sexual differences in responses of meadow voles to environmental cues in the presence of mink odor

Abstract

In rodents, defensive behaviors increase the chances of survival during a predator encounter. Observable rodent defensive behaviors have been shown to be influenced by the presence of predator odors and nearby environmental cues such as cover, odors from conspecifics and food availability. Our experiment tested whether a predator scent cue influenced refuge preference in meadow voles within a laboratory setting. We placed voles in an experimental apparatus with bedding soaked in mink scent versus olive oil as a control across from four tubes that either contained (a) a dark plastic covering, (b) opposite-sex conspecific odor, (c) a food pellet, or (d) an empty, unscented space. A three-way interaction of tube contents, subject sex, and the presence of mink or olive oil on the preference of meadow voles to spend time in each area of the experimental apparatus and their latency to enter each area of the apparatus revealed sex differences in the environmental preference of meadow voles facing the risk of predation. The environmental preference of female, but not male, meadow voles was altered by the presence of mink urine or olive oil. A similar trend was found in the latency of males and females to enter each area of the experimental apparatus. These differences suggest that each sex utilizes different methods to increase their fitness when experiencing a predation risk. The observed sex differences may be explained by the natural history of voles owing to the differences in territorial range and the dynamics of evasion of terrestrial predators.